team

Rafik Aramyan

Head of the Department of Mathematical Cybernetics

About

Education:
  • Yerevan State University (1978-1983)
  • Steklov Institute of Mathematics of the Russian Academy of Sciences in Moscow (1988)
  • Yerevan State University (2010) 
  • Dissertation: Stochastic Algorithms in Stochastic and Integral Geometry, Doctor of Mathematical Sciences (= European Degree Applicant)

Experience:
  • 1988 – 1994, Yerevan State University, Department of Probability Theory and Mathematical Statistics
    • Assistant
  • 1987 – 1998, Institute of Mathematics of the National Academy of Sciences of Armenia
    • Junior Researcher
  • 1993 – 1995, American University of Armenia
  • 1998 - present, Institute of Mathematics of the National Academy of Sciences of Armenia
    • Researcher
  • 2003 – 2013, Russian-Armenian (Slavonic) University, Department of Mathematical Cybernetics        
    • Assistant Professor
  • 2013 - present, Russian-Armenian (Slavonic) University, Department of Mathematical Cybernetics        
    • Professor
  • 2025 - present, Russian-Armenian (Slavonic) University, Institute of Mathematics and Informatics
    • Director
Specialization: Probability Theory and Mathematical Statistics

Taught Subjects:
  • Probability Theory and Mathematical Statistics
  • Econometrics
  • Actuarial Mathematics
  • Stochastic and Integral Geometry

Scientific interests

  • Probability Theory and Mathematical Statistics
  • Econometrics
  • Stochastic and Integral Geometry
  • Convex Geometry
  • Inverse problems

List of publications

  • R. Aramyan, “The Sine Representation of Centrally Symmetric Convex Bodies”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2018, Vol. 53(6), pp. 307 -312, (Izv. NAN Arm., Matematika, 2018, 53(6), pp. 3-13).
  • R Aramyan , A Flag representation for n-dimensional convex body, The Journal of Geometric Analysis , 2019, vol. 29 (3), pp. 2998-3009.
  • R. Aramyan, “To local reconstruction from the spherical mean Radon transform”, Journal of Mathematical Analysis and Applications, vol. 470, pp. 102-117, 2019.
  • R. Aramyan, \Zonoids with an equatorial characterization", Applications of Math- ematics., (No. AM 333/2015) vol. 61( 4), 2016, pp. 413-422.
  • R. Aramyan, \Reconstruction of Three Dimensional Convex Bodies from the Curvatures of Their Shadows", American Journal of Computational Mathematics vol 5, 2015, pp.86-95.
  • R. Aramyan, \A Solution of Generalized Cosine Equation in Hilbert's Fourth Problem", Advances in Pure Mathematics Vol.4 No.6, 2014, pp.234-241.
  • R. Aramyan, \A representation for convex bodies", Armenian J. of Math., vol. 5(1), 2013, pp. 69-74.
  • R. Aramyan, \Convex bodies and measures in the space of planes", J. of Contemp. Math. Analysis (Armenian Acad. Sci.), vol. 47(2), 2012, pp. 19-30.
  • R. Aramyan, \Reconstruction of measures in the space of planes", Lobachevskii J. of Math., vol. 32 (4), 2011, pp. 241-246.
  • R. Aramyan, \Reconstruction of centrally symmetric convex bodies in Rn", Bulet- inul Acad. De StiinteA R. Moldova. Math., vol. 65(1), 2011, pp. 28-32.
  • R. Aramyan, \The integral and stochastic geometric approach to Hilbert's fourth problem", Proceedings of the 8th Seminar on probability and Stochastic processes University of Guilian, Iran 2011
  • R. Aramyan, \Solution of an integral equation by consistency method", Lithuanian Math.Journal, vol. 50 (2), 2010, pp. 133-139.
  • R. Aramyan, \Generalized Radon transform on the sphere", Analysis, vol.30 (3), 2010, pp. 271-284.
  • R. Aramyan, \Solution of one integral equation on the sphere by methods of integral geometry", Doklady Mathematics, vol. 79(3), 2009, pp. 325-328.
  • R. Aramyan, \A Representation for the generating density of convex bodies", Lobachevskii J. of Math., vol. 30 (2), 2009, pp. 97-100.
  • R. Aramyan, \Measure of planes intersecting a convex body", Sutra: Inter. J. of Mathematical Science, Vol. 3 (1), 2010.
  • Rafik H. Aramyan, Robert M. Mnatsakanov “To recovering the moments from the spherical mean Radon transform”, Journal of Mathematical Analysis and Applications vol. 490(2), 2020.
  • Р. Арамян , “Описание линейно-аддитивных метрик на R^n”, Труды Московского математического общества, том 81(1), 2020, pp.135-142
  • R. Aramyan, V. Mnatsakanyan, “Conditional moments of the distribution of the distance of two random points in a convex domain in R^2”, Proceedings of the YSU, Physical and Mathematical Sciences vol 54(1) 2020
  • R. Aramyan, D. Yeranyan, Chord length distribution and the distance between two random points in a convex body in Rn, Gen. Lett. Math (GLM), Vol.9 No.2 2020

File information