ГОУ ВПО РОССИЙСКО-АРМЯНСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ

Составлен в соответствии с государственными требованиями к минимуму содержания и уровню подготовки выпускников по направлению 11.03.03

Конструирование и технология электронных средств и Положением «Об УМКД РАУ». УТВЕРЖДАЮ:

Директор ИФИ Саркисян А.А.

POCOGNATAME PORTER TO THE PORT

21.07.2023г.

Институт: Инженерно-физический

Кафедра: Микроэлектронные схемы и системы

Автор:

К.т.н., доцент Туманян Анна Кароевна

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

Дисциплина: <u>Б1.В.ДВ.10.02</u> «Системы на кристалле»

Направление: 11.03.03 «Конструирование и технология электронных средств»

EPEBAH

Структура и содержание УМКД

1. Аннотация

- 1.1. Выписка из ФГОС ВО РФ по минимальным требованиям к дисциплине
 - В результате изучения данной дисциплины студент должен:
 - знать: процесс проектирования систем на кристалле;
 - уметь: применять средства систем автоматизированного проектирования (САПР);
 - владеть: языками VHDL, Verilog.
- 1.2. Взаимосвязь дисциплины с другими дисциплинами учебного плана специальности (направления)
 - Курс «Системы на кристалле» тесно взаимосвязан с такими дисциплинами специальности «Конструирование и технология электронных средств», как «Электротехника и электроника», «Проектирование цифровых интегральных схем», «Микропроцессорные системы», «Конструирование электронных средств на базе программируемых БИС».
- 1.3. Требования к исходным уровням знаний, умений и навыков студентов для прохождения дисциплины (что должен знать, уметь и владеть студент для прохождения данной дисциплины)

Для прохождения данной дисциплины студент должен

- знать: структуры типовой системы на кристалле (СнК)
- уметь: исследовать особенности проектирования СнК и перспективы применения систем на кристалле.
- **владеть:** знаниями курсов «Языки проектирования аппаратных средств», «Проектирование цифровых интегральных схем».
- 1.4. Предварительное условие для прохождения (дисциплина(ы), изучение которых является необходимой базой для освоения данной дисциплины)

Для освоения данной дисциплины у студентов должна быть устойчивая база знаний по дисциплинам: информатика, языки проектирования аппаратных средств, информационные технологии.

2. Содержание

2.1. Цели и задачи дисциплины

Система на кристалле - это СБИС, интегрирующая на кристалле различные функциональные блоки, которые образуют законченное изделие для автономного

ГОУ ВПО Российско-Армянский (Славянский) университет

применения в электронной аппаратуре. Цель дисциплины: изучить структуры типовой системы на кристалле (СнК), варианты реализации систем на кристалле, исследовать особенности проектирования СнК и перспективы применения систем на кристалле.

2.2. Требования к уровню освоения содержания дисциплины (какие компетенции (знания, умения и навыки) должны быть сформированы у студента после прохождения данной дисциплины)

В результате освоения данной дисциплины у студента должны быть сформированы следующие компетенции:

- готовностью выполнять расчет и проектирование деталей, узлов и модулей электронных средств, в соответствии с техническим заданием с использованием средств автоматизации проектирования (ПК-6);
- способностью разрабатывать проектную и техническую документацию, оформлять законченные проектно-конструкторские работы (ПК-7);

общепрофессиональные компетенции (ОПК):

- способностью решать задачи анализа и расчета характеристик электрических цепей (ОПК-3);
- способностью использовать основные приемы обработки и представления экспериментальных данных (ОПК-5);
- способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности (ОПК-7);
- 2.3. Трудоемкость дисциплины и виды учебной работы (в академических часах и кредитах)

2.3.1.Объем дисциплины и виды учебной работы

Виды учебной работы	Всего, в акад. часах
1.Общая трудоемкость изучения дисциплины по семестрам, в т. ч.:	144/4кред
1.1. Аудиторные занятия, в т. ч.:	28
1.1.1.Лекции	14
1.1.2. Лабораторные занятия	14
1.2. Самостоятельная работа, в т.ч.:	53
Итоговый контроль <u>Экзамен</u>	63

2.3.2. Распределение объема дисциплины по темам и видам учебной работы

Разделы и темы дисциплины	Всего (ак. часов)	Лекции (ак. часов)	Лабор. (ак. часов)	
1	2=3+4	3	4	
Модуль 1				
Тема 1. Способы реализации систем на кристалле.	2	1	1	
Тема 2.Использование IP-блоков	2	1	1	
Тема 3. Организация средств проектирования	2	2		
Тема 4. Средства системного проектирования	4	2	2	
Тема 5. Средства функционального проектирования	4	2	2	
Тема 6. Особенности проектирования систем на кристалле	4	2	2	
Тема 7. Возможности реализации систем на кристалле	4	2	2	
Тема 8. Перспективы применения систем на кристалле	4	2	2	
ИТОГО	28	14	14	

2.3.3 Содержание тем дисциплины

Модуль 1.

Тема 1. Способы реализации систем на кристалле

В полной мере использовать возможности современных полупроводниковых технологий для достижения максимальной производительности, уменьшения потребляемой мощности и площади кристалла позволяет проектирование ASIC на основе библиотек стандартных элементов.

ГОУ ВПО Российско-Армянский (Славянский) университет

Способы реализации систем на кристалле не ограничиваются вышеперечисленными методами. Существует ряд промежуточных вариантов, которые можно определить как конфигурируемые системы на кристалле (Configurable System on Chip – CsoC).

Тема 2. Использование ІР-блоков.

Существует большой выбор библиотек специализированных ІР-блоков для различных прикладных областей и технологий изготовления микросхем, в частности библиотек ІР-блоков для ПЛИС, представленных в виде синтезируемых блоков на языках высокого уровня, списков цепей в элементном базисе производителей ПЛИС и готовых макросов с топологической реализацией.

Тема 3. Организация средств проектирования

Выбор средств проектирования топологии определяется способом реализации. Для ПЛИС – это средства конкретного производителя. Для ASIC проектирование топологии сейчас все больше выполняется специальными дизайн-бюро, которые имеют полный набор всех необходимых средств проектирования.

Тема 4. Средства системного проектирования

Понятие системного уровня проектирования фактически включает в себя все, что лежит выше уровня разработки RTL. Здесь создается модель исполняемой спецификации, которая служит эталоном поведения проектируемой системы на всех последующих этапах. В системном проектировании можно выделить три уровня детализации:

- уровень "миссии" и выбора общей концепции построения системы, включающий моделирование операционной среды, в которой будет работать проектируемая система, определение статических и динамических сценариев, планирование целевых задач;
- архитектурный уровень с моделированием и анализом производительности систем, сетевых архитектур и протоколов, пропускной способности каналов;
- уровень микроархитектуры, т.е. моделирование и анализ алгоритмов, протоколов, схем разрешения конфликтов на шинах, методов управления памятью, программно-аппаратное разделение и разработка программного обеспечения (драйверы и др.).

Тема 5. Средства функционального проектирования

Функциональный уровень на сегодняшний день остается основным при проектировании цифровых систем независимо от их физической реализации. Задача разработчика на функциональном уровне – создать RTL-описание системы, из которого можно средствами логического синтеза получить работоспособный проект. Поэтому к средствам

функционального проектирования обычно относят средства моделирования и отладки RTL-кода а также средства логического синтеза из RTL-описаний.

Тема 6. Особенности проектирования систем на кристалле

В большинстве случаев СнК представляет собой цифровую СБИС, которая может также содержать ряд аналоговых блоков. Поэтому для проектирования СнК используются те же методы и средства, что и для СБИС. Эти средства реализованы в виде систем автоматизированного проектирования (САПР), поставляемых компаниями Cadance, Synopsis, Mentor Graphics и др. В качестве элементной базы эти САПР используют библиотеки функциональных элементов, в состав которых входят как простые логические вентили и триггеры, так и макроэлементы, выполняющие более сложные функции: регистры, счетчики, сумматоры, умножители, арифметико-логические устройства и т. д.

Тема 7. Возможности реализации систем на кристалле

Современная микроэлектронная технология обеспечивает следующие варианты реализации СнК:в виде заказной СБИС (ASIC); на базе ПЛИС высокой интеграции (FPGA). При реализации СнК в виде ASIC используется традиционный маршрут проектирования ASIC с использованием аппаратно реализованных СФ-блоков, интегрированных в структуру СБИС, и синтезируемых СФ-блоков, которые изготовитель транслирует в физическую структуру с помощью собственных библиотек функциональных элементов.

Тема 8. Перспективы применения систем на кристалле

СнК в виде ASIC перспективны для реализации высокобюджетных проектов, предполагающих последующий крупносерийный выпуск изделий. Они будут применяться в тех случаях, когда реализация заданных технических характеристик невозможна с помощью других решений — систем на плате или СнК на базе FPGA. Учитывая достаточно высокие риски, связанные с разработкой СнК в виде ASIC, можно ожидать, что доля таких проектов будет относительно небольшой.

2.4. Материально-техническое обеспечение дисциплины

Аудитории и лаборатории оснащены программными средствами автоматизированного синтеза и симуляции цифровых логических схем (VCS, DesignCompiler, ICCompiler) и необходимой учебной литературой.

2.5. Распределение весов по модулям и формам контроля

	текуш в резу оцен	ес форм дего кон ильтирун ке текуп контроля	гроля ощей цего	ей контроля и			Вес итоговых оценок промежуточных контролей в результирующей оценке промежуточного контроля	Вес оценки результирующей оценки промежуточных контролей и оценки итогового контроля в результирующей оценке итогового контроля
Вид учебной работы/контроля	M1	M2	М3	M1	M2	М3		
Контрольная работа		1	1		1	1		
Лабораторные работы								
Устный опрос								
Вес результирующей оценки текущего контроля в итоговых оценках промежуточных контролей Вес итоговой оценки 1-го промежуточного контроля в результирующей оценке промежуточных контролей Вес итоговой оценки 2-го промежуточного контроля в результирующей оценке промежуточных контроля в результирующей оценке промежуточных контролей Вес итоговой оценки 3-го промежуточного контроля							0.5	
в результирующей оценке промежуточных контролей т.д.							0.5	
Вес результирующей оценки промежуточных контролей в результирующей оценке итогового контроля								0.4
Экзамен(оценка итогового контроля)								0.6
			$\Sigma = 1$			$\Sigma = 1$	∑ = 1	∑ = 1

3. Теоретический блок

- 3.1. Материалы по теоретической части курса
 - 3.1.1. Немудров В., Мартин Г. Системы на кристалле. Проектирование и развитие. М.: Техносфера, 2004, с. 216.
 - 3.1.2. AMBA Specification Rev. 2.0//ARM Limited, 1999, p. 230
 - 3.1.3. Шагурин И., Шалтырев В., Волов А. «Большие» FPGA как элементная база для реализации систем на кристалле//Электронные компоненты, 2006, №5, с.83-88.
 - 3.1.4. Несс Р. Ежегодное исследование рынка встраиваемых систем//Электронные компоненты, 2007, №11, с.69-77.

4. Материалы по оценке и контролю знаний

- 4.1. Перечень экзаменационных вопросов
 - 4.1.1. Способы реализации систем на кристалле.
 - 4.1.2. Использование ІР-блоков
 - 4.1.3. Организация средств проектирования
 - 4.1.4. Средства системного проектирования
 - 4.1.5. Средства функционального проектирования
 - 4.1.6. Особенности проектирования систем на кристалле
 - 4.1.7. Возможности реализации систем на кристалле
 - 4.1.8. Перспективы применения систем на кристалле.